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SUMMARY 
 

Most greenfields mineral exploration projects involve a process of testing targets that have been selected on the basis of geoscientific 

data. Although this data can be used to rank targets, questions still arise as to how many targets should be tested before the area is 

dropped. This paper addresses this question with a probabilistic model of the exploration process and illustrates the method with a 

geophysical example. 

 

The model is governed by the target and background distributions of the variable used to rank targets, various economic parameters 

and two geologically determined probabilities. It generates Expected Value, Probability of Success and Return on Investment (ROI) 

for a range of possible project budgets showing where each is maximized. It is argued that a lower and upper limit for the number of 

tests to be undertaken can be defined in terms of this model. The lower limit, called the Equal Opportunity Truncation point, occurs 

where the ROI is maximized and is relevant when other equally attractive prospects are available. The upper limit, called the 

Economic Truncation point, occurs when the Expected Value is maximized. 

 

The kimberlite exploration case study illustrates a new method of estimating the target distribution using magnetic modelling and 

shows how the probabilistic model could have been used to budget this exploration project. 
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INTRODUCTION 
 

How long should mineral exploration persist in an exploration licence area?  The longer exploration continues, the greater the 

probability of success, but this does not guarantee the venture will be profitable. Eventually, there must come a point where the 

incremental cost of testing will be greater than the expected value of the result. Moreover, usually well before this point, a decision 

must be made as to whether it is better to terminate a current exploration programme and start anew somewhere else. Such decisions 

can only be made by considering how the financial variables (deposit value and exploration costs) interact with the effectiveness of 

the detection method and probabilities related to the prospectivity of the area. 

 

Over the past 10 years there has been increasing recognition of the need to impose geoscientific and financial rigour on the planning 

and execution of the mineral exploration process. This has resulted in an increased focus on probabilistic models and their 

incorporation into an economic analysis of exploration programs. Two broad themes have emerged under the general title of Mineral 

Prospectivity Analysis (Porwal and Kreuzer, 2010). They are generally applied in the early stages of mineral exploration and can be 

described as Data-driven methods and Process-based methods. 

 

Data-driven methods, such as the well-established Weights-of-Evidence method (WoE, Bonham-Carter, 1994), developed from early 

studies of statistical modelling of the spatial relationship between known mineral deposits and geoscientific data, exploit the 

capabilities of modern Geographic Information Systems to integrate exploration data. Subsequently, Neural Net methods (Singer and 

Kouda, 1999, Barnett and Williams, 2006), which are less constrained by assumptions of conditional independence, have been used 

for the same problem. Both are “data-driven” in the sense that they require substantial training information in well-explored areas to 

characterize the joint distributions of the exploration data in the presence and in the absence of known deposits. Through the 

application of Bayes Rule this dual focus naturally gives rise to an explicit consideration of the false positive rate and a definition of 

the conditional probability P(M|T) that a selected target (T) will be found to be mineralized (M) after testing. 

 

More recently (Kreuzer et. al., 2008), there has been increased focus on comparing staged, process-based models of ore formation 

with observed data, to establish the overall probability of mineralization. Such methods are ideal in greenfields terrains where there 

are no known deposits to train the data-driven methods. However, the necessary trade-off for this flexibility means the probabilities 

associated with the component parts of these sophisticated models are determined more subjectively than with the data-driven 

methods. Moreover it is still difficult to characterize the data that will lead to false positives in subsequent target detection. 

 

Both methods can include an economic analysis of the exploration program. The various cost and value parameters, which can 

usually be defined much more confidently than the geological probabilities, are used to estimate Expected Costs and Expected 

Values for the program as a whole. Such valuations usually encompass the full scope of an exploration program from area selection 

to deposit delineation. 
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In this paper I have chosen to narrow the focus by concentrating on the planning of the detection phase of exploration. Here costs 

increase rapidly and budget decisions become important. Hronsky and Groves (2008) make this important point: 
 

In addition, it is at this scale that the company has to make a serious commitment of resources to the project, in terms of time, 

people and money, to advance to the direct detection phase of exploration. Where direct detection technologies are available at 
the camp scale, they are invariably associated with large false positive rates (soil geochemistry grids, detailed geophysical 

surveys such as IP, EM, ground magnetics, and gravity). Greenfields exploration is a classic example of a low base rate 

probability of success scenario, which is therefore highly sensitive to the false positive rate of any targeting or detection 

technology. Future research needs to focus on addressing this predictive–detective switchover point 
 

To achieve this focus, I will assume that the area selection is complete and that I can express downstream costs and valuations as 

simple expected values. I will then look in detail at how the trade-off between detection and false positives determines the Expected 

Value (EV), the Expected Return on Investment (ROI) and the probability of success, PS, of a project.  

 

 

A SIMPLIFIED MODEL FOR EXPLORATION 

 
Figure 1 illustrates the flow chart of the simplified model of an exploration program. 

The critical decision point focuses on the detection of a mineral occurrence. The 

definition will be project dependent. Makenzie (1989) suggests “indications of 

mineralization of potential economic grades across mineable widths … obtained by 

drilling” but these are not very common and in some circumstances “indications of 

mineralization” might be sufficient to motivate more drilling in the area.  
 

The parameters of the model are: 

N Number of possible targets (e.g. 100,000) 

CS Cost to set up program (e.g. 500 K) 

CT Cost of testing a target (e.g. $10 K) 

CD Cost of delineating a mineral occurrence. (e.g. $200 K) 

VD Expected Value of a deposit    (e.g. $100 M).   

Pd Probability of detecting a mineral occurrence = P(T|M) 

Pfp Probability of a false positive = P(T|M) 

PM Probability of a mineral occurrence from untargeted drilling. (e.g. PM = 10-3) 

P(D|M) Probability that a mineral occurrence will be economic. (e.g. P(D|M) = 10-2) 

 

It is important to note that PM is defined by the upstream planning and research. It is 

equal to the expected number of mineral occurrences divided by the number of 

possible targets. It is assumed that P(D|M) has also been defined on the basis of 

assumed or established size and grade distributions for the style of deposit in question 

(Singer and Kouda 1999b). Pd and Pfp are the important probabilities for this model. 

They are functions of the two key probability distributions for target detection 

 

Figure 2 illustrates typical distributions. The exploration data 

generates a variable x which is used to rank targets and define a cut-

off value x0 (here ~125). x could be as simple as a single element 

geochemical measurement or as complex as a favourability index 

from a neural net algorithm which uses many different data inputs. 

In the presence of a mineral occurrence, x is distributed as fM (x) and 

in the absence of a mineral occurrence, as fM (x). Here fM (x) will be 

called the target distribution and fM (x) the background distribution. 

Once the cut-off is selected, the project is defined and the budget set 

because all the targets with x > x0 will be tested. Now Pd will be the 

proportion of the area under fM (x) with x > x0 and Pfp is similarily 

defined in terms of fM (x). 

 

In this simplified model, the selection of a cut-off value for x 

determines the budget and is directly related to the number of 

targets that can be tested. Clearly the nature and separation of fM (x) 

and fM (x) determine how successful detection will be. Both 

distributions shown here are Lognormal and will be used as an 

example to illustrate the technique. One way to estimate these 

distributions will be discussed later but, for the moment, given this 

simple model and the parameter settings above, the following 

financial and probability results follow. 

Figure 1. Simplified flow chart of an 

exploration program. 

Figure 2 Target and Background distributions for the 

example exploration program. Note the log scale. Stars 

indicate two cut-off points defining possible exploration 

programs.  
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Expected number of false positives   Nfp = N (1-PM) Pfp 

Expected number of mineral occurrences    Nd  = N PM Pd 

Expected Expenditure    E  =  Nfp CT + Nd (CT + CD)  +  CS  

Expected Value of a Mineral Occurrence  VM = VD P(D|M)  –  (CT + CD)   

Expected Value     V = VD P(D|M) Nd  –  E 

Return on Investment    ROI = V / E 

Probability of Success (at least one deposit).  PS = 1 - { 1 - PM Pd P(D|M) }N 

Probability the kth target is a mineral occurrence  
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Expected Expenditure and Value on the kth target  Ek = CD P(M|Tk) + CT,  Vk = {VD P(D|M) – CD}P(M|Tk) - CT 

Expected ROI of the kth target   ROIk = Vk / Ek 

 

The Receiver Operating Characteristics (ROC) curve, Figure 3(a), plots Pd against Pfp and summarizes the critical information from 

Figure 2 (Scharf, 1990). Each point on the curve corresponds to a different cut-off. The stars correspond to the two cut-off values 

shown in Figure 2. When these probabilities are used with the example parameters, the results for the economic variables are plotted 

as a function of possible budget allocation. These are shown in Figure 3 (b), (c) and (d). 

 

Figure 3(b) shows how the Expected Value varies as a function of expenditure. It reaches a maximum after which the rate at which 

false positives are encountered so exceeds the rate at which mineral occurrences are detected that overall value declines. Smith 

(2005) calls this point Economic Truncation (ET) and suggests that exploration should not continue after this point. The cut-off for 

the ET point is shown on Figure 2 at ~125 defining the shaded areas for Pd and Pfp. 

 
Figure 3. Results derived from the distribution shown in Figure 2. (a) ROC curve (b) Expected Value. (c) Probability of 

success (black) and P(M|T) mauve (d) Return on Investment (black) and Target ROI (mauve). The green curves in each case 

show the result if the detection is perfect (Pd = 1 for all Pfp). 

 
Figure 3(c) shows how the probability of success (PS) changes as a function of expenditure. Clearly most of the increase in Ps is 

complete by the time Economic Truncation is reached and there is probably little point in proceeding further. The corresponding 

curve for the perfect detection case reaches ~0.65 where it terminates because all the expected mineral occurrences in the EL have 
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been found. P(M|T), the probability a target will be a mineral occurrence at each stage of the program, falls rapidly as exploration 

proceeds and is negligible by the Economic Truncation point. 

 

Figure 3(d) shows the ROI. This reaches a maximum well before the Economic Truncation point where it is only slightly less than 

the ROI for perfect targeting. I have called this the Equal Opportunity Truncation (EOT) point because, if an opportunity exists to 

invest in a series of small projects with the same characteristics as this one, you should do so and restrict each to an expenditure of 

~$5M. On Figure 2 the cut-off for EOT is shown where x~200 and corresponds to the black stars on Figure 3(b)-(d).  

 

Given P(M|T) (Figure 3(c)) it is possible to calculate the expected ROI of a target at each stage of the detection program. This is 

shown in purple in Figure 3(d). It is interesting to note that this target ROI curve must intersect with the project ROI curve at the EOT 

point. This means that, if equal opportunities are still available, testing targets beyond this point cannot be justified by arguing that 

the project set-up costs are sunk and “one more test will be neither here nor there”. 

 

It is interesting to consider the effect of changes in the various economic parameters on the three output variables (V, PS and ROI). 

Changes in the set-up cost, CS, displace but do not affect the shape of the Value and probability curves. The Value curves are 

translated equally down and to the right as CS increases and the probability curves shift to the right by the same amount. The position 

of the ET point on the ROC curve is solely determined by the slope of the tangent, which is independent of CS. This means that as CT 

declines, the ET point moves progressively to the right and VET increases because the Y-intercept of the tangent increases. 

 

The behaviour of the ROI is driven primarily by the set-up costs. When CS is zero, the EOT point occurs at the very start of target 

testing and the ROI falls steadily with increasing expenditure. This is because the project ROI at the start is the same as the ROI of 

the first test (the peak of the mauve curve in Figure 3(d)). As CS increases, the EOT point moves towards the ET point until they are 

coincident when the value and ROI are both zero. 

 

Once a time scale and discount rate is defined, it is relatively simple to modify this analysis to provide discounted expenditures, 

values and internal rate of return measures. The general characteristics of this model as described above hold for a wide variety of 

distributional and economic parameters. Assuming PM and P(D|M) have been well chosen, the major difficulty that remains is to 

characterize fM and fM  reliably.   

 

The model can be extended to multivariate exploration data (X) when the joint distributions of this data is available for both targets 

fM(X) and backgrounds, fM(X). In this case, the x in the above discussion is replaced by the likelihood ratio l = fM(X) / fM(X) (Scharf, 

1990). Alternatively (Barnett and Williams, 2006), neural nets can be used to define fM and fM where x is a favourability index. 

However, whatever method is used, large numbers of representative samples of target and background data must be available to 

generate these distributions. 

 

CASE STUDY 
 

The following case study uses magnetic data acquired for kimberlite exploration. The area has ten kimberlites with normal magnetic 

response, eight with reversed magnetic response and twenty five with no observable magnetic response. The data was resampled onto 

a grid with 190 m line spacing and 33m along-line sampling and was reduced to the pole. After pre-whitening (Green and Hunter, 

2004) the grid was filtered with a Constant False Alarm Ratio (CFAR) filter (Scharf, 1990) which was optimized for detecting 

kimberlites with a 50-100m radius. Having no information about diamond grade, I stretch the definition of a mineral occurrence to 

define a kimberlite as a mineral occurrence.  

 

In order to define the filter and to generate fM(x), 10,000 semi-infinite cylinder models 

of kimberlite responses (Singh and Sabina, 1978) were calculated using lognormally 

distributed radius and susceptibility values. The background distribution fM(x) was 

estimated with magnetic data from a similar area without known kimberlites. Figure 4 

shows the two (smoothed) distributions.  

 

The background distribution is almost symmetrical and is distinctly heavy-tailed. Here 

large positive values are likely to be false positives when filtering for normally 

magnetized targets and large negatives for the reversely magnetized targets. Because 

the data has been reduced to the pole, the target distribution for reversely magnetized 

targets (not shown) is merely the reflection of the normal curve in the ordinate axis. 

 

The area of the survey is ~1183 km2 and I obtain the cell size of 0.16 km2 by assuming 

it is governed by the way the flight-line grid samples the survey area. Together, these 

give the number of possible targets in the survey area (N) as 7394. Because the model assumes all kimberlites are potentially 

detectable with magnetics, the true number of kimberlites is Nt = 18 and this gives PM = 18/7392 = 0.0028.  Assuming the other 

economic information is the same as in the example above, the curves shown in Figure 3 can be reproduced for this survey (Figure 

5). 

 

 In addition, using knowledge of the true kimberlite locations, it is possible to simulate the progress of this exploration program 

assuming the CFAR filtering method was used. This simulation produces a series of targets for testing with successively smaller 

CFAR values. Each target is either a successful detection or a false positive. At each stage the number of detections (Nd) and false 

positives (Nfp) is retained and the True Positive Rate (TPR = Nd/Nt ) and False Positive Rate (FPR = Nfp/(N-Nt) are calculated. The 

Figure 4 Target (red) and Background 

(black) distributions for the case study. 
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TPR and the FPR are the practical realization of the Pd and Pfp predicted by the model. The realized ROC curve (in red) is plotted 

with the modelled ROC curve in Figure 5(a), as are the corresponding realizations of Value, PS and ROI are in Figure 5(b) – 5(d). 

 

 
Figure 5. Results derived from the distribution shown in Figure 4. In each case the model results are in black, simulation 

results in red, perfect detection results in green. (a) ROC curves (b) Expected Value. (c) Probability of success (d) ROI. 

 

DISCUSSION 
 

In the kimberlite example, the modelled ROC curve provides a reasonable match to the simulated realization of the exploration 

program. However, the model under-estimates the rate at which false positives are encountered in the middle stages of the program 

and over-estimates at the latter stages. In the end, the two errors cancel so that the ET point would have been a good place to stop the 

detection phase. 

 

The method used to establish fM and fM is a hybrid between the purely “data-driven” methods like WoE and the staged, process-based 

geological models of Kreuzer et. al. (2008). fM was established in a purely data-driven way using areas thought to be kimberlite-free 

and otherwise similar in background response. However, because the target distributions were generated by geophysical modelling, 

multiple instances of known kimberlites were not needed - a major advantage in greenfields exploration.  

 

The method has other potential advantages: 

 The method could be used to compare different exploration strategies. It could be used to decide if adding AEM, with its 

increased costs, would improve the attractiveness of the kimberlite project.  

 If necessary, the geophysical models that generate fM can be refined mid-project. For example if a kimberlite is found in the 

early stages of exploration, the size and susceptibility distributions might be revised to make the ROC curve more accurate.  

 Modelling could also be used within the program to check that the initial assumptions are still relevant. In the example, if the 

expected number of kimberlites was predicted correctly but they were all assumed to be detectable by magnetics, PM would 

have been estimated to be 0.006. This would have predicted a VET of $27M with a PS of 0.33 for an expenditure of $11M. 

Halfway through the program it would have become obvious that things were not going as hoped and the model revised to 

terminate the program with about half the planned expenditure and only slightly lower ROI. 

 

More generally, the above analysis suggests we should consider using the EOT and ET points as the lower and upper bounds for the 

detection phase of an exploration program. Clearly we might expect to fund a smaller project that is closer to the EOT point when 
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there are other, equally-attractive projects available. In the example shown in Figure 3, four $5M projects would produce a combined 

Expected Value about twice VET with ~50% increase in PS for the same $20M expenditure. This result confirms the view (Kreuzer et. 

al., 2008) that: 
…there are three principal levers that control the return on exploration investment at the portfolio and program levels: (1) the 
number of projects effectively tested and turned over, (2) the average expenditure per project (especially on those that failed), and 

(3) the average probability of success across the portfolio. 

 

In this case, the improved performance comes from testing only the highest ranked anomalies – the ones least likely to generate false 

positives – before moving on to an equally prospective area. However, as the kimberlite case study cautions, allowance must be made 

for the errors in the modelling process. In that example, truncating too early would have missed kimberlites that were found quite 

easily.  

CONCLUSIONS 
 

The modelling strategy discussed here formalizes part of what an exploration manager does implicitly when assessing a project. A 

decision to proceed means that it is expected that the rate at which mineral occurrences will be found will be sufficiently greater than 

the false positive rate to produce an acceptable Expected Value. Implementing this formal process is not easy because the 

distributions fM and fM are hard to define and the advantages of the strategy can only be achieved if the input parameters are correctly 

tuned to the realities of the exploration problem.  

 

The difficulty in selecting prospective ground (and thus estimating PM) is well recognized and the subject of continuing research.  On 

the detection side, while there is considerable research to understand what deposits look like from a geological, geochemical and 

geophysical viewpoint, there is less effort put into understanding how they and their smaller cousins, mineral occurrences, are 

distributed in the data. However, we put even less research to understanding how the background geology within which we explore 

can appear to be a mineral occurrence to our detection technologies. While defining the fM is perhaps somewhat unglamorous, it is 

just as critical as the defining fM. 

 

If these difficulties can be overcome we should be able to make mineral exploration more cost effective through improved planning 

and execution of the detection phase. In this context the Economic Truncation and Equal Opportunity Truncation points are a good 

starting point for deciding when to terminate exploration. Between the EOT point and the ET point, the trade-off is between ROI and 

Expected Value. How this is best resolved will depend on how the project sits within a larger portfolio of projects and the 

management overheads required by multiple small projects. 
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